AQA Chemistry A-level

3.3.7: Optical Isomers

Detailed Notes

3.3.7.1-Optical Isomers

Optical isomerism is a type of stereoisomerism where molecules have the same molecular formula but a different spatial arrangement of atoms in space. It occurs when there is an asymmetrical carbon within an organic molecule known as a chiral centre.

Chiral Centres

A chiral centre is a carbon atom with four different groups bonded around it so there is no line of symmetry to the molecule.

Example:

Image courtesy of Dummies.com

The chiral centre is commonly indicated using * next to the asymmetric carbon.

Optical Isomers

The presence of a chiral centre leads to the presence of two possible isomers that are mirror images of each other. These are optical isomers.

Example:

The two different isomers are called enantiomers and are unique due to their effect on plane polarised light. Each enantiomer causes the rotation of plane polarised light by 90° in opposite directions.

Example:

Racemic Mixtures

A racemate is formed when optical isomers are produced as a pair of enantiomers in a 1:1 ratio. The optical rotational effect on polarised light caused by each enantiomer causes the overall effect to be zero as the opposite directions of rotation cancel out. As a result the mixture produced is optically inactive, known as a racemic mixture.

These two isomers are able to form in this way due to a nucleophilic addition reaction.

Nucleophilic Addition

In these reactions, nucleophiles are able to attack a molecule with a carbonyl group from above or below the carbon-oxygen double bond. This means the two possible products of the reaction are mirror images and therefore optical isomers.

Mechanism

